Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Ростовский государственный экономический университет (РИНХ)»

	УТВЕРЖДАЮ
Дирек	стор Таганрогского института
име	ени А.П. Чехова (филиала)
	РГЭУ (РИНХ)
	Петрушенко С. А.
<u> </u>	»20г.
Рабочая программа дисципли	іны
Вычислительная математи	

направление 44.03.05 Педагогическое образование (с двумя профилями подготовки) направленность (профиль) 44.03.05.24 Математика и Физика

Для набора _____ года

Квалификация Бакалавр УП: 44.03.05.24-24-1-МФZ.plx стр. 2

КАФЕДРА математики и физики

Распределение часов дисциплины по курсам

Курс		5	Итого	
Вид занятий	УП	РΠ		
Лекции	4	4	4	4
Лабораторные	6	6	6	6
Итого ауд.	10	10	10	10
Контактная работа	10	10	10	10
Сам. работа	125	125	125	125
Часы на контроль	9	9	9	9
Итого	144	144	144	144

ОСНОВАНИЕ

Учебный план утвержден учёным советом вуза от 29.08.2024 протокол № 1.
Программу составил(и): канд. техн. наук, Зав. каф., Фирсова С.А.
Зав. кафедрой: Фирсова С.А.

УП: 44.03.05.24-24-1-МФZ.plx стр. 3

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

1.1 формирование у выпускника знаний, способствующих решению профессиональных задач с помощью численных методов, современных компьютерных технологий, методов вычислительной математики; исследование особенностей применения и методики использования численных методов как готового инструмента математического моделирования; построение алгоритмов и организации вычислительных процессов на персональных компьютерах

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

- ПКО-1.1:Владеет средствами ИКТ для использования цифровых сервисов и разработки электронных образовательных ресурсов
- ПКО-1.2:Осуществляет планирование, организацию, контроль и корректировку образовательного процесса с использованием цифровой образовательной среды образовательной организации и открытого информационно-образовательного пространства
- ПКО-1.3:Использует ресурсы международных и национальных платформ открытого образования в профессиональной деятельности учителя основного общего и среднего общего образования
- УК-1.1:Демонстрирует знание особенностей системного и критического мышления и готовности к нему
- УК-1.2:Применяет логические формы и процедуры, способен к рефлексии по поводу собственной и чужой мыслительной деятельности
- УК-1.3:Анализирует источник информации с точки зрения временных и пространственных условий его возникновения
- УК-1.4: Анализирует ранее сложившиеся в науке оценки информации
- УК-1.5:Сопоставляет разные источники информации с целью выявления их противоречий и поиска достоверных суждений
- УК-1.6:Аргументированно формирует собственное суждение и оценку информации, принимает обоснованное решение
- УК-1.7:Определяет практические последствия предложенного решения задачи

В результате освоения дисциплины обучающийся должен:

Знать:

основные понятия и базовый математический аппарат численных методов, основные методы и алгоритмы вычислительной математики

Уметь:

решать стандартные задачи профессиональной деятельности с применением численных методов, реализовывать программно и использовать на практике математические алгоритмы, в том числе с применением современных вычислительных систем

Владеть:

навыками численного решения практических задач механики и математического моделирования, анализом и исследованием получившихся решений, навыками программной реализации при численном решении прикладных задач математического моделирования

	3. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ					
Код занятия	Наименование разделов и тем /вид занятия/	Семестр / Курс	Часов	Компетен- ции	Литература	
	Раздел 1. Введение в вычислительную математику. Элементы теории погрешностей					
1.1	Предмет и содержание дисциплины. Виды и типы задач, требующих численного решения. Математические модели. Виды и классификация погрешностей математических моделей. Понятия абсолютной и относительной погрешностей. Погрешности арифметических операций. Учет погрешностей машинных вычислений. Устойчивые и неустойчивые задачи и методы. Примеры. /Лек/	5	2	ПКО-1.1 ПКО-1.3 УК-1.2 УК- 1.4 УК-1.6 УК-1.7	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5Л2.1 Л2.2 Л2.3	
1.2	Предмет и содержание дисциплины. Виды и типы задач, требующих численного решения. Математические модели. Виды и классификация погрешностей математических моделей. Понятия абсолютной и относительной погрешностей. Погрешности арифметических операций. Учет погрешностей машинных вычислений. Устойчивые и неустойчивые задачи и методы. Примеры. /Ср/	5	10	ПКО-1.1 ПКО-1.3 УК-1.2 УК- 1.4 УК-1.6 УК-1.7	Л1.5Л2.3	

УП: 44.03.05.24-24-1-МФZ.plx cтp. 4

	Раздел 2. Интерполяция				
2.1	Математическая постановка задачи интерполирования. Общий подход к параболической интерполяции. Интерполяционный многочлен Лагранжа. Оценка погрешности многочлена Лагранжа. Конечноразностные интерполяционные формулы Ньютона, Гаусса. О других подходах к построению и видах конечноразностных интерполяционных многочленов. Единственность интерполяционного многочлена. Примеры погрешности интерполяции бесконечно дифференцируемых функций. /Лек/	5	2	ПКО-1.1 ПКО-1.3 УК-1.4 УК- 1.7	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5Л2.1 Л2.2 Л2.3
2.2	Интерполяционный многочлен Лагранжа и конечноразностные интерполяционные формулы Ньютона и Гаусса. /Лаб/	5	2	ПКО-1.1 ПКО-1.3 УК-1.2 УК- 1.4 УК-1.6	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5Л2.1 Л2.2 Л2.3
2.3	Исследование погрешности конечноразностных интерполяционных формул Ньютона и Гаусса при помощи системы MathCAD. /Лаб/	5	4	ПКО-1.1 ПКО-1.3 УК-1.6 УК- 1.7	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5Л2.1 Л2.2 Л2.3
2.4	Исследование погрешности полинома Лагранжа и конечноразностных интерполяционных формул Ньютона, Гаусса в системе Visual Studio. /Ср/	5	10	ПКО-1.1 УК-1.1 УК- 1.6 УК-1.7	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5Л2.1 Л2.2 Л2.3
2.5	Математическая постановка задачи интерполирования. Общий подход к параболической интерполяции. Интерполяционный многочлен Лагранжа. Оценка погрешности многочлена Лагранжа. Конечноразностные интерполяционные формулы Ньютона, Гаусса. О других подходах к построению и видах конечноразностных интерполяционных многочленов. Единственность интерполяционного многочлена. Примеры погрешности интерполяции бесконечно дифференцируемых функций. /Ср/ Раздел 3. Численное дифференцирование и интегрирование	5	14	ПКО-1.3 УК-1.1 УК- 1.7	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5Л2.1 Л2.2 Л2.3
3.1	Вывод формул численного дифференцирования, основанных на интерполяционных многочленах. О погрешности численного дифференцирования. Неустранимая погрешность формул численного дифференцирования. Задача численного интегрирования. Простейшие квадратурные формулы. Метод Симпсона. Оценки погрешности. Семейство квадратурных формул Ньютона-Котеса. Оценки погрешности квадратур Ньютона-Котеса. /Ср/	5	14	ПКО-1.2 УК-1.6 УК- 1.7	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5Л2.1 Л2.2 Л2.3
3.2	Программная реализация методов численного дифференцирования в системе Visual Studio. Использование системы MathCAD для применения простейших квадратурных формул. Программная реализация простейших квадратур в системе Visual Studio. Вычисление определенных интегралов семейством квадратур Ньютона-Котеса. /Ср/	5	18	ПКО-1.2 УК-1.1 УК- 1.7	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5Л2.1 Л2.2 Л2.3
	Раздел 4. Численные методы линейной алгебры				
4.1	Прямые и итерационные методы линейной алгебры. Прямые методы: методы Крамера и Гаусса. Оценка временной сложности методов Крамера и Гаусса. Вычисление определителей и нахождение обратных матриц на основе метода Гаусса. Решение систем линейных уравнений методом простых итераций (МПИ). Достаточное условие сходимости МПИ. Необходимое и достаточное условие сходимости МПИ. Метод Якоби. Метод Зейделя. Оценки погрешности МПИ, методов Якоби и Зейделя. /Ср/	5	14	ПКО-1.1 ПКО-1.3 УК-1.2 УК- 1.5	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5Л2.1 Л2.2 Л2.3
4.2	Введение в линейную алгебру. Прямые и итерационные методы решения систем линейных алгебраических уравнений. /Ср/	5	14	ПКО-1.2 УК-1.1 УК- 1.6 УК-1.7	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5Л2.1 Л2.2 Л2.3

УП: 44.03.05.24-24-1-МФZ.plx cтр. 5

	Раздел 5. Приближенные методы решения задачи Коши				
5.1	Метод Пикара. Решения задачи Коши с помощью разложения в степенной ряд. Разностные методы решения задачи Коши. Метод Эйлера. Модификации метода Эйлера. Метод Эйлера-Коши. Экспоненциальная оценка погрешности метода Эйлера-Коши. О разностных методах, основанных на разложении в ряд Тейлора. Семейство методов Рунге-Кутта. Метод Рунге-Кутта 4-го порядка. О методах семейства высокого порядка. Принцип Рунге. Методы Адамса. Семейство явных и неявных методов. /Ср/	5	14	ПКО-1.3 УК-1.3 УК- 1.5	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5Л2.1 Л2.2 Л2.3
5.2	Приближенные методы решения задачи Коши. Программная реализация приближенных методов решения задачи Коши в Visual Studio.Метод Пикара. Решения задачи Коши с помощью разложения в степенной ряд. /Ср/ Раздел 6. Контроль	5	17	ПКО-1.1 ПКО-1.2 УК-1.5 УК- 1.6 УК-1.7	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5Л2.1 Л2.2 Л2.3
6.1	/Экзамен/	5	9	ПКО-1.1 ПКО-1.2 ПКО-1.3 УК-1.1 УК- 1.2 УК-1.3 УК-1.4 УК- 1.5 УК-1.6 УК-1.7	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5Л2.1 Л2.2 Л2.3

4. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Структура и содержание фонда оценочных средств для проведения текущей и промежуточной аттестации представлены в Приложении 1 к рабочей программе дисциплины.

	5. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ						
	5.1. Основная литература Авторы, Заглавие Издательство, год Колич-во						
Л1.1	Коллатц Л., Горбунов А. Д.	Функциональный анализ и вычислительная математика	Москва: Мир, 1969	http://biblioclub.ru/index .php? page=book&id=456959 неограниченный доступ для зарегистрированных пользователей			
Л1.2	Воеводин В. В.	Вычислительная математика и структура алгоритмов: курс лекций	Москва: Национальный Открытый Университет «ИНТУИТ», 2016	http://biblioclub.ru/index .php? page=book&id=578102 неограниченный доступ для зарегистрированных пользователей			
Л1.3		Численные методы в научных расчетах: учебное пособие (лабораторный практикум): практикум	Ставрополь: Северо- Кавказский Федеральный университет (СКФУ), 2019	http://biblioclub.ru/index .php? page=book&id=596193 неограниченный доступ для зарегистрированных пользователей			
Л1.4	Вержбицкий В. М.	Вычислительная линейная алгебра: учебное пособие	Москва Берлин: Директ- Медиа, 2021	http://biblioclub.ru/index .php? page=book&id=601642 неограниченный доступ для зарегистрированных пользователей			

УП: 44.03.05.24-24-1-МФZ.plx cтр. 6

	Авторы,	Заглавие	Издательство, год	Колич-во
Л1.5	Блатов, И. А., Старожилова, О. В.	Вычислительная математика: учебное пособие	Самара: Поволжский государственный университет телекоммуникаций и информатики, 2017	http://www.iprbookshop. ru/75371.html неограниченный доступ для зарегистрированных пользователей
		5.2. Дополнительная литерат	ура	
	Авторы,	Заглавие	Издательство, год	Колич-во
Л2.1	Гильмутдинов Р. Ф., Хабибуллина К. Р.	Численные методы: учебное пособие	Казань: Казанский научно- исследовательский технологический университет (КНИТУ), 2018	http://biblioclub.ru/index .php? page=book&id=500887 неограниченный доступ для зарегистрированных пользователей
Л2.2	Корнеев П. К., Тарасенко Е. О., Гладков А. В., Дерябин М. А.	Численные методы: учебное пособие	Ставрополь: Северо- Кавказский Федеральный университет (СКФУ), 2018	http://biblioclub.ru/index .php? page=book&id=562830 неограниченный доступ для зарегистрированных пользователей
Л2.3	Рогова, Н. В., Рычков, В. А.	Вычислительная математика: учебное пособие	Самара: Поволжский государственный университет телекоммуникаций и информатики, 2017	http://www.iprbookshop. ru/75370.html неограниченный доступ для зарегистрированных пользователей

5.3 Профессиональные базы данных и информационные справочные системы

5.4. Перечень программного обеспечения

Microsoft Office

MS Visual Studio 2008 Express Edition

5.5. Учебно-методические материалы для студентов с ограниченными возможностями здоровья

При необходимости по заявлению обучающегося с ограниченными возможностями здоровья учебно-методические материалы предоставляются в формах, адаптированных к ограничениям здоровья и восприятия информации. Для лиц с нарушениями зрения: в форме аудиофайла; в печатной форме увеличенным шрифтом. Для лиц с нарушениями слуха: в форме электронного документа; в печатной форме. Для лиц с нарушениями опорно-двигательного аппарата: в форме электронного документа; в печатной форме.

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Помещения для проведения всех видов работ, предусмотренных учебным планом, укомплектованы необходимой специализированной учебной мебелью и техническими средствами обучения. Для проведения лекционных занятий используется демонстрационное оборудование. Лабораторные занятия проводятся в компьютерных классах, рабочие места в которых оборудованы необходимыми лицензионными программными средствами и выходом в Интернет

7. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

Методические указания по освоению дисциплины представлены в Приложении 2 к рабочей программе дисциплины.